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Exact Matching Review 
Where is GATTACA in the human genome? 

E=183,105 
 

  
 

These are general techniques useful for any search problem 
  

 

Bowtie/BWA/SGA 
 

Indexed Searching 

BWT/FM-Index 
 (~ 3GB)  

Vmatch, PacBio Aligner 
 

Binary Search 

Suffix Array    
(>15 GB) 

Brute Force 
(3 GB) 

Naive 
 

Slow & Easy 

BANANA!
BAN!!
 ANA!
  NAN!
   ANA!

$BANANA!
A$BANAN!
ANA$BAN!
ANANA$B!
BANANA$!
NA$BANA!
NANA$BA!



Agenda 

1.  Background on Dynamic Programming 
1.  Fibonacci Sequences 
2.  Longest-Increasing-Subsequences 

2.  Edit Distance & Alignment 
1.  Computing Edit Distances 
2.  Global vs Local Alignment 

3.  Applications 
1.  Dynamic Time Warping 
2.  BLAST 



First:  
A quick warm-up exercise 



Fibonacci Sequence 
def fib(n):  
  if n == 0 or n == 1: 
     return n  
  else:  
  return fib(n�1) + fib(n�2)  

f(1) f(0) 

f(2) f(1) f(1) f(0) f(1) f(0) f(1) f(0) 

f(4) f(3) f(3) f(2) 

f(3) f(2) f(2) f(1) f(2) f(1) f(1) f(0) 

F(6) 

f(5) f(4) 



Fibonacci Sequence 

1 0 

1 1 1 0 1 0 1 0 

3 2 2 1 

2 1 1 1 1 1 1 0 

8 

5 3 

[How long would it take for F(7)?] 
[What is the running time?] 

def fib(n):  
  if n == 0 or n == 1: 
     return n  
  else:  
  return fib(n�1) + fib(n�2)  



Bottom-up Fibonacci Sequence 
def fib(n):  
  table = [0] * (n+1)  
  table[0] = 0  
  table[1] = 1  
  for i in range(2,n+1):  
    table[i] = table[i�2] + table[i�1] 
return table[n]  

1 2 3 4 5 0 

1 1 2 3 5 0 

6 

8 

[How long will it take for F(7)?] 
[What is the running time?] 



Dynamic Programming 
•  General approach for solving (some) complex problems 

–  When applicable, the method takes far less time than naive methods. 
•  Polynomial time (O(n) or O(n2) instead of exponential time (O(2n) or O(3n))  

•  Requirements: 
–  Overlapping subproblems 
–  Optimal substructure 

 

•  Applications: 
–  Fibonacci  
–  Longest Increasing Subsequence 
–  Sequence alignment, Dynamic Time Warp, Viterbi  

 

•  Not applicable: 
–  Traveling salesman problem, Clique finding, Subgraph isomorphism, … 
–  The cheapest flight from airport A to airport B involves a single 

connection through airport C, but the cheapest flight from airport A to 
airport C involves a connection through some other airport D. 

F(6) 

F(5) F(4) 

F(3) F(2) 

F(1) F(0) 



Second:  
A quick interesting side problem 



Longest Increasing Subsequence 
•  Given a sequence of N numbers A1,  A2,  A3, … AN, find the 

longest monotonically increasing subsequence  
–  29, 6, 14, 31, 39, 78, 63, 50, 13, 64, 61, 19 

•  Greedy approach (always extend the subsequence if you can): 
–  29, 6, 14, 31, 39, 78, 63, 50, 13, 64, 61, 19    => 4 

•  Brute force:  
–  Try all possible O(2n) subsequences 
  29, 6, 14, 31, 39, 78, 63, 50, 13, 64, 61, 19    => 1 
  29, 6, 14, 31, 39, 78, 63, 50, 13, 64, 61, 19    => invalid 
  29, 6, 14, 31, 39, 78, 63, 50, 13, 64, 61, 19    => invalid 
  29, 6, 14, 31, 39, 78, 63, 50, 13, 64, 61, 19    => 2 
  … 

 
 



Longest Increasing Subsequence 
•  Idea: 

–  The solution for all N numbers depends on the solution for the first N-1 
–  Look through the previous values to find the longest subsequence ending 

at X such that AX < AN 

•  Dynamic Programming: 
–  Def: L[j] is the longest increasing subsequence ending at position j 
–  Base case: L[0] = 0  Recurrence:       LIS=max{L[i]} 
 

L[ j]=
i< j

A[i]<A[ j ]

max L[i]{ }+1

1 2 3 4 5 

29 6 14 31 39 

6 

78 

7 8 9 10 

63 50 13 64 

11 12 

61 62 

1 1 2 3 4 5 5 5 2 6 6 7 

0 

- 

0 

Index 

Value 

LIS 

Prev 0 0 2 3 4 5 5 5 2 5 8 11 - 

[What’s the LIS of 0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15 ?] 

13 

19 

3 

3 



Longest Increasing Subsequence 
// Initialize 
L[0] = 0; P[0] = 0 
 

// Iteratively apply recurrence  
for i = 1 to N 

// find the best LIS to extend 
bestlis = 0; bestidx = -1 
for j = 1 to i 

 if ((A[j] <= A[i])) && (L[j] > bestlis))  
  bestlis = L[j]; bestidx = j 

L[i] = bestlis + 1;  P[i] = bestidx 
 

// Scan the L array to find the overall LIS 
LIS = 0 
for j = 1 to N 

 if (L[j] > LIS) LIS = L[j] 
print “The LIS is $LIS” 

 

1 

A[1] 

2 3 … i 

A[2] A[3] A[i] 

… j 

A[j] 

L[1] L[2] L[3] L[i] L[i]+1 

P[1] P[2] P[3] P[j] i 

… n 

A[n] 

0 

- 

0 

0 

[What’s the running time?] 



And now for the main event! 



In-exact alignment 
•  Where is GATTACA approximately in the human genome? 

–  And how do we efficiently find them? 

•  It depends… 
–  Define 'approximately' 

•  Hamming Distance, Edit distance, or Sequence Similarity 
•  Ungapped vs Gapped vs Affine Gaps 
•  Global vs Local 
•  All positions or the single 'best'? 

–  Efficiency depends on the data characteristics & goals 
•  Bowtie: BWT alignment for short read mapping 
•  Smith-Waterman: Exhaustive search for optimal alignments 
•  BLAST: Hash based homology searches 
•  MUMmer: Suffix Tree based whole genome alignment 



Similarity metrics 
•  Hamming distance 

–  Count the number of substitutions to transform one string into 
another 
! ! !GATTACA ! ! ! !ATTACCC!

   ! !|||X|||           XX|XX|X!
! ! !GATCACA ! ! ! !GATTACA!
! ! ! !1 ! ! ! ! ! !5              

•  Edit distance 
–  The minimum number of substitutions, insertions, or deletions to 

transform one string into another 

! ! !GATTACA ! ! ! !-ATTACCC!
   ! !|||X||| ! ! ! !X|||||XX!
! ! !GATCACA ! ! ! !GATTAC-A!
! ! ! !1 ! ! ! ! ! !3             !



AGCACACA ! ACACACTA in 4 steps 
 
AGCACACA   ! (1. change G to C) 
ACCACACA   ! (2. delete C) 
ACACACA   ! (3. change A to T)!
ACACACT   ! (4. insert A after T)!
ACACACTA   ! done 
 
   [Is this the best we can do?] 

 

Edit Distance Example 



AGCACACA ! ACACACTA in 3 steps 
 
AGCACACA   ! (1. change G to C) 
ACCACACA   ! (2. delete C) 
ACACACA   ! (3. insert T after 3rd C) 
ACACACTA   ! done 
 
   [Is this the best we can do?] 

 

Edit Distance Example 



Reverse Engineering Edit Distance 
D(AGCACACA, ACACACTA) = ?!

 
Imagine we already have the optimal alignment of the strings, the last column can 
only be 1 of 3 options: 

! ! ! !…M ! ! ! !…I ! ! ! !…D!
! ! ! !…A ! ! ! !…- ! ! ! !…A!
! ! ! !…A ! ! ! !…A ! ! ! !…-!

 
The optimal alignment of last two columns is then 1 of 9 possibilities 

! !…MM!…IM!…DM! ! !…MI!…II!…DI! ! !…MD!…ID!…DD!
! !…CA!…-A!…CA! ! !…A-!…--!…A-! ! !…CA!…-A!…CA!
! !…TA!…TA!…-A! ! !…TA!…TA!…-A! ! !…A-!…A-!…--!

 

The optimal alignment of the last three columns is then 1 of 27 possibilities… 
! ! ! ! !…M… ! !…I… ! !…D…!
! ! ! ! !…X… ! !…-… ! !…X…!
! ! ! ! !…Y… ! !…Y… ! !…-…!

!

Eventually spell out every possible sequence of {I,M,D} 



8,6 7,6 7,7 

+δ 
+1i +1d 

7,6 6,6 6,7 

+δ 
+1i +1d 

7,7 6,7 6,8 

+δ 

+1i +1d 

Recursive solution 

D(AGCACACA, ACACACTA) = min{D(AGCACACA, ACACACT) + 1, 
            D(AGCACAC, ACACACTA) + 1, 

              D(AGCACAC, ACACACT) +δ(A, A)}  
8,8 

8,7 7,7 7,8 

+δ +1i +1d 

[What is the 
running time?] 

•  Computation of D is a recursive process. 
–  At each step, we only allow matches, substitutions, and indels 
–  D(i,j) in terms of D(i�,j�) for i� ≤ i and j� ≤ j. 



Dynamic Programming 

•  We could code this as a recursive function call... 
...with an exponential number of function evaluations 

•  There are only (n+1)x(m+1) pairs i and j 
– We are evaluating D(i,j) multiple times 

•  Compute D(i,j) bottom up. 
–  Start with smallest (i,j) = (1,1). 
–  Store the intermediate results in a table. 

•  Compute D(i,j) after D(i-1,j), D(i,j-1), and D(i-1,j-1)  



Recurrence Relation for D 
Find the edit distance (minimum number of operations to 
convert one string into another) in O(mn) time 
 
•  Base conditions: 

–  D(i,0) = i, for all i = 0,...,n 
–  D(0,j) = j, for all j = 0,...,m 

 
•  For i > 0, j > 0: 

  D(i,j) = min {   
        D(i-1,j) + 1,          // align 0 chars from S, 1 from T 
         D(i,j-1) + 1,          // align 1 chars from S, 0 from T 
         D(i-1,j-1) + δ(S(i),T(j)) // align 1+1 chars 
         } 

 

"

[Why do we want the min?] 



Dynamic Programming Matrix 
A C A C A C T A 

0 1 2 3 4 5 6 7 8 

A 1 

G 2 

C 3 

A 4 

C 5 

A 6 

C 7 

A 8 

[What does the initialization mean?] 



Dynamic Programming Matrix 
A C A C A C T A 

0 1 2 3 4 5 6 7 8 

A 1 0 

G 2 

C 3 

A 4 

C 5 

A 6 

C 7 

A 8 

D[A,A] = min{D[A,]+1, D[,A]+1, D[,]+δ(A,A)}  



Dynamic Programming Matrix 
A C A C A C T A 

0 1 2 3 4 5 6 7 8 

A 1 0 1 

G 2 

C 3 

A 4 

C 5 

A 6 

C 7 

A 8 

D[A,AC] = min{D[A,A]+1, D[,AC]+1, D[,A]+δ(A,C)}  



Dynamic Programming Matrix 
A C A C A C T A 

0 1 2 3 4 5 6 7 8 

A 1 0 1 2 

G 2 

C 3 

A 4 

C 5 

A 6 

C 7 

A 8 

D[A,ACA] = min{D[A,AC]+1, D[,ACA]+1, D[,AC]+δ(A,A)}  



Dynamic Programming Matrix 
A C A C A C T A 

0 1 2 3 4 5 6 7 8 

A 1 0 1 2 3 4 5 6 7 

G 2 

C 3 

A 4 

C 5 

A 6 

C 7 

A 8 

D[A,ACACACTA] = 7 
-------A!
*******|!
ACACACTA !

[What about the other A?] 



Dynamic Programming Matrix 
A C A C A C T A 

0 1 2 3 4 5 6 7 8 

A 1 0 1 2 3 4 5 6 7 

G 2 1 1 2 3 4 5 6 7 

C 3 

A 4 

C 5 

A 6 

C 7 

A 8 

D[AG,ACACACTA] = 7 
----AG--!
****|***!
ACACACTA !



Dynamic Programming Matrix 
A C A C A C T A 

0 1 2 3 4 5 6 7 8 

A 1 0 1 2 3 4 5 6 7 

G 2 1 1 2 3 4 5 6 7 

C 3 2 1 2 2 3 4 5 6 

A 4 3 2 1 2 2 3 4 5 

C 5 4 3 2 1 2 2 3 4 

A 6 5 4 3 2 1 2 3 3 

C 7 6 5 4 3 2 1 2 3 

A 8 7 6 5 4 3 2 2 2 

D[AGCACACA,ACACACTA] = 2 
AGCACAC-A!
|*|||||*|!
A-CACACTA !

[Can we do it any better?] 



Break 



Dynamic Programming Matrix 
A C A C A C T A 

0 1 2 3 4 5 6 7 8 

A 1 0 1 2 3 4 5 6 7 

G 2 1 1 2 3 4 5 6 7 

C 3 2 1 2 2 3 4 5 6 

A 4 3 2 1 2 2 3 4 5 

C 5 4 3 2 1 2 2 3 4 

A 6 5 4 3 2 1 2 3 3 

C 7 6 5 4 3 2 1 2 3 

A 8 7 6 5 4 3 2 2 2 

D[AGCACACA,ACACACTA] = 2 
AGCACAC-A!
|*|||||*|!
A-CACACTA !

[Can we do it any better?] 



Global Alignment Schematic 

T 

S 

(0,0) 

(n,m) 

•  A high quality alignment will stay close to the diagonal 
•  If we are only interested in high quality alignments, we can skip filling in 

cells that can't possibly lead to a high quality alignment 
•  Find the global alignment with at most edit distance d: O(2dn) 

Nathan Edwards 



Sequence Similarity 
•  Similarity score generalizes edit distance 

–  Certain mutations are much more likely than others 
•  Hydrophilic -> Hydrophillic much more likely than Hydrophillic -> Hydrophobic 

–  BLOSSUM62 
•  Empirically measure substitution rates among proteins that are 62% identical 
•  Positive score: more likely than chance, Negative score: less likely 



Edit Distance and Global Similarity 
  D(i,j) = min {   
        D(i-1,j) + 1,  
         D(i,j-1) + 1,  
         D(i-1,j-1) + δ(S(i),T(j)) 
         } 

 
   s = 4x4 or 20x20 scoring matrix 

 
  S(i,j) = max { 
         S(i-1,j) - 1,  
         S(i,j-1) - 1,  
         S(i-1,j-1) + s(S(i),T(j)) 
         } 
   

[Why max?] 



Local vs. Global Alignment 

•  The Global Alignment Problem tries to find the best 
end-to-end alignment between the two strings 

–  Only applicable for very closely related sequences 

•  The Local Alignment Problem tries to find pairs of 
substrings with highest similarity. 

–  Especially important if one string is substantially longer 
than the other 

–  Especially important if there is only a distant evolutionary 
relationship 



Global vs Local Alignment Schematic 

T 

S 

(0,0) 

(n,m) 

Max score 
for local  

alignment 

Nathan Edwards 

Global  
alignment 

always ends 
in the corner 



Local vs. Global Alignment (cont�d) 

•  Global Alignment 

•  Local Alignment—better alignment to find 
conserved segment 

    --T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC 
      |  || |  ||  | | | |||    || | | |  | ||||   | 
    AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C 

                tccCAGTTATGTCAGgggacacgagcatgcagagac 
                     |||||||||||| 

aattgccgccgtcgttttcagCAGTTATGTCAGatc 

bioalgorithms.info 



The Local Alignment Recurrence 

•  The largest value of si,j over the whole edit 
graph is the score of the best local alignment. 

•  The recurrence: 

                      0      
si,j   = max     si-1,j-1 + δ (vi, wj) 
                     s i-1,j  + δ (vi, -) 
                     s i,j-1 + δ (-, wj) 

Power of ZERO: there is 
only this change from the 
original recurrence of a 
Global Alignment - since 
there is only one �free ride� 
edge entering into every 
vertex 

bioalgorithms.info 



G-Local Alignments: 
Searching for GATTACA 

T 

P 

(0,0) 

(n,m) 

T� 

Similarity P & T��≥ δ 

•  Don�t �charge� for optimal alignment starting in cells (0,j) 
•  Base conds: D(0,j) = 0, D(i,0) = Σk≤i s(S(k),�-�)  

•  Don�t �charge� for ending alignment at end of P (but not necc. T) 
•  Find cell (n,j) with edit distance ≤ δ 

Nathan Edwards 



Affine Gap Penalties 
•  In nature, a series of k indels often come as a 

single event rather than a series of k single 
nucleotide events: 

Normal scoring would 
give the same score 
for both alignments 

This is more 
likely. 

This is less 
likely. 

bioalgorithms.info 



Accounting for Gaps 
•  Gaps- contiguous sequence of spaces in one of the rows 

•  Score for a gap of length x is:  -(ρ + σx) 
    where ρ >0 is the gap opening penalty 
    ρ will be large relative to gap extension penalty σ 
 

–  Gap of length 1: -(ρ + σ) = -6 
–  Gap of length 2: -(ρ + σ2) = -7 
–  Gap of length 3: -(ρ + σ3) = -8 

 

•  Smith-Waterman-Gotoh incorporates affine gap penalties 
without increasing the running time O(mn) 



Break 



Dynamic Time Warp 
•  Algorithm for measuring the similarity between two 

sequences of numeric values that vary in time or speed 
–  Computes a non-linear mapping for sequence A to sequence B 
–  Many applications for video, audio, and graphics 
–  Speech processing: Recognize speech patterns coping with 

different speaking speeds 
–  EEG processing: Identify anomalies in brain or heart activity 



DTW Algorithm 
•  DP Algorithm 

–  Input: two time series C and Q 
–  Compute the time warping matrix d 

 d(0,0) = 0; d(i,0) = d(0,j) = ∞ 
 

       d(i-1, j) 
d(i,j) = |ci – qj| + min   d(i,j-1) 

       d(i-1, j-1) 

•  Warping matrix projects sequence C 
to sequence Q, allowing for non-
linear contractions and expansions. 



•  Rapidly compare a sequence Q to a database to find all 
sequences in the database with an score above some 
cutoff S. 
–  Which protein is most similar to a newly sequenced one? 
–  Where does this sequence of DNA originate? 

•  Speed achieved by using a procedure that typically finds 
�most� matches with scores > S. 
–  Tradeoff between sensitivity and specificity/speed 

•  Sensitivity – ability to find all related sequences 
•  Specificity – ability to reject unrelated sequences 

Basic Local Alignment Search Tool 

(Altschul et al. 1990) 



Seed and Extend 
    FAKDFLAGGVAAAISKTAVAPIERVKLLLQVQHASKQITADKQYKGIIDCVVRIPKEQGV 
    F  D  +GG AAA+SKTAVAPIERVKLLLQVQ ASK I  DK+YKGI+D ++R+PKEQGV 
    FLIDLASGGTAAAVSKTAVAPIERVKLLLQVQDASKAIAVDKRYKGIMDVLIRVPKEQGV 

•  Homologous sequence are likely to contain a short high 
scoring word pair, a seed. 
–  Unlike Baeza-Yates, BLAST *doesn't* make explicit guarantees 

•  BLAST then tries to extend high scoring word pairs to 
compute maximal high scoring segment pairs (HSPs). 
–  Heuristic algorithm but evaluates the result statistically. 

 
 



BLAST  - Algorithm - 

•  Step 1: Preprocess Query 
    Compile the short-high scoring word list from query. 
     The length of query word, w, is 3 for protein scoring 
     Threshold T is 13 
      
 
 



BLAST  - Algorithm - 

•  Step 2: Construct Query Word Hash Table 

  Query: LAALLNKCKTPQGQRLVNQWIKQPLMD 
 

 W
ord list 

Hash Table 



BLAST  - Algorithm - 

•  Step 3: Scanning DB 
     Identify all exact matches with DB sequences 
 

Query Word Neighborhood 
Word list 

Sequences in DB 

Step 1 Step 2 

Sequence 1 

Sequence 2 



BLAST  - Algorithm - 

•  Step 4 (Search optimal alignment) 
 For each hit-word, extend ungapped alignments in both directions. 
 Let S be a score of hit-word 

 
•  Step 5 (Evaluate the alignment statistically) 
  Stop extension when E-value (depending on score S) become less than 

threshold. The extended match is called High Scoring Segment Pair.  
 
 
   E-value = the number of HSPs having score S (or higher) expected to occur by chance. 
    ! Smaller E-value, more significant in statistics 
          Bigger E-value , by chance 
 

   E[# occurrences of a string of length m in reference of length L]  ~ L/4m 

 
 



BLAST  E-values 

The expected number of HSPs with the score at least S is : 

  E = K*n*m*e-�S   
   K, � are constant depending on model 

         n, m  are the length of query and sequence 
 
The probability of finding at least one such HSP is: 

  P = 1 - eE 

             ! If a word is hit by chance (E-value is bigger),  
        P become smaller.  

 
The distribution of Smith-Waterman local alignment scores between two 

random sequences follows the Gumbel extreme value distribution 



Very Similar Sequences 

Query: HBA_HUMAN Hemoglobin alpha subunit 
Sbjct: HBB_HUMAN Hemoglobin beta subunit 
 
Score =  114 bits (285),  Expect = 1e-26 
Identities = 61/145 (42%), Positives = 86/145 (59%), Gaps = 8/145 (5%) 
 
Query  2   LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF------DLSHGSAQV 55 
           L+P +K+ V A WGKV  +  E G EAL R+ + +P T+ +F  F      D   G+ +V 
Sbjct  3   LTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV 60 
 
Query  56  KGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPA 115 
           K HGKKV  A ++ +AH+D++    + LS+LH  KL VDP NF+LL + L+  LA H    
Sbjct  61  KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK 120 
 
Query  116 EFTPAVHASLDKFLASVSTVLTSKY 140 
           EFTP V A+  K +A V+  L  KY 
Sbjct  121 EFTPPVQAAYQKVVAGVANALAHKY 145 
 
 



Quite Similar Sequences 

Query: HBA_HUMAN Hemoglobin alpha subunit 
Sbjct: MYG_HUMAN Myoglobin 
 
Score = 51.2 bits (121), Expect = 1e-07,  
Identities = 38/146 (26%), Positives = 58/146 (39%), Gaps = 6/146 (4%) 
 
Query  2  LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF------DLSHGSAQV  55 
          LS  +   V   WGKV A    +G E L R+F   P T   F  F      D    S  + 
Sbjct  3  LSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASEDL  62 
 
Query  56 KGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPA  115 
          K HG  V  AL   +         +  L+  HA K ++     + +S C++  L +  P  
Sbjct  63 KKHGATVLTALGGILKKKGHHEAEIKPLAQSHATKHKIPVKYLEFISECIIQVLQSKHPG  122 
 
Query  116 EFTPAVHASLDKFLASVSTVLTSKYR  141 
           +F      +++K L      + S Y+ 
Sbjct  123 DFGADAQGAMNKALELFRKDMASNYK  148 



Not similar sequences 

Query: HBA_HUMAN Hemoglobin alpha subunit 
Sbjct: SPAC869.02c [Schizosaccharomyces pombe] 
 
 Score = 33.1 bits (74),  Expect = 0.24 
 Identities = 27/95 (28%), Positives = 50/95 (52%), Gaps = 10/95 (10%) 
 
Query  30  ERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAH  89 
           ++M  ++P      P+F+ +H  +      + +A AL N   ++DD+  +LSA  D     
Sbjct  59  QKMLGNYPEV---LPYFNKAHQISL--SQPRILAFALLNYAKNIDDL-TSLSAFMDQIVV 112 
 
Query  90  K---LRVDPVNFKLLSHCLLVTLAAHLPAEF-TPA  120 
           K   L++   ++ ++ HCLL T+   LP++  TPA 
Sbjct  113 KHVGLQIKAEHYPIVGHCLLSTMQELLPSDVATPA  147 



Blast Versions 

Program! Database! Query!

BLASTN" Nucleotide" Nucleotide"
BLASTP" Protein" Protein"

BLASTX" Protein" Nucleotide translated in
to protein"

TBLASTN" Nucleotide translated in
to protein" Protein"

TBLASTX" Nucleotide translated in
to protein"

Nucleotide translated in
to protein"



NCBI Blast 
•  Nucleotide Databases 

–  nr: All Genbank 
–  refseq: Reference 

organisms 
–  wgs: All reads 

•  Protein Databases 
–  nr: All non-redundant 

sequences 
–  Refseq: Reference 

proteins  



BLAST Exercise 
>whoami 
TTGATGCAGGTATCTGCGACTGAGACAATATGCA
ACAGTTGAATGAATCATAATGGAATGTGCACTCT
AACCAGCCAATTTGATGCTGGCTGCAGAGATGC
AAGATCAAGAGGTGACACCTGCTCTGAAGAAAG
CACAGTTGAACTGCTGGATCTGCAACTACAGCA
GGCACTCCAGGCACCAAGACAACATCTTTTACA
CCAGCAAACATGTGGATTGATATCTCCTAACAGC
AGTGATTAACAGAGACGACTGCAGGATTTGCTTC
CACAAACAAAAT 
 



Parameters 

•  Larger values of w increases the number of 
neighborhood words, but decreases the number of 
chance matches in the database.   
–  Increasing w decreases sensitivity. 

•  Larger values of T decrease the overall execution 
time, but increase the chance of missing a MSP having 
score ≥ S.   
–  Increases T decreases the sensitivity 

•  Larger values of S increase the specificity.  The value 
of S is affected by changes in the expectation value 
parameter. 



Sequence Alignment Summary 
•  Distance metrics: 

–  Hamming: How many substitutions? 
–  Edit Distance: How many substitutions or indels? 
–  Sequence Similarity: How similar (under this model of similarity)? 

•  Techniques 
–  Seed-and-extend: Anchor the search for in-exact using exact only 
–  Dynamic Programming: Find a global optimal as a function of its parts 
–  BWT Search: implicit DFS of SA/ST  

•  Sequence Alignment Algorithms: Pick the right tool for the job 
–  Smith-Waterman: DP Local sequence alignment 
–  BLAST: Homology Searching 
–  Bowtie/BWA/Novoalign: short read mapping 

 


